9th International Conference 2023

Dose Comparison Between VMC and AXB for Brain Stereotactic Radiosurgery (SRS)

Dandan Zheng, James Yoon, Hyunuk Jung, Michael Milano, Kenneth Usuki, Sara Hardy. Department of Radiation Oncology, University of Rochester, Rochester, NY USA

Purpose

VMC and AXB are two advanced dose calculation algorithms used by two popular treatment planning systems, Brainlab Elements and Varian Eclipse, for brain SRS treatment planning. This large-cohort study investigates if the two algorithms are in close agreement for dose calculation.

Materials and Methods

- Cohort: 138 Elements plans, including both single-target VMAT and single-iso-multi-target DCA, treating LINAC-based SRS on 443 targets.
- Dose compared between VMC (Elements) and AXB (Eclipse) recalculation. Target dose compared using a near-maximum reference point (Dref), dose received by 95% of target volume (D95), and mean dose (Dmean).
- The occurrence of large dose differences (>5% vs. \leq 5%) was analyzed with other factors for possible correlation, including: target size (<0.3 cc vs. \geq 0.3cc), target-to-isocenter distance, technique (VMAT vs. DCA), and distance to skull).

Results

- Surprisingly large dose differences were found between the two algorithms for some patients, with difference as high as 15%. 53 targets (12%) had $\geq 5\%$ Dref difference. Differences observed for Dref, D95, and Dmean.
- Of all 443 targets, VMC showed 2.3±2.6% higher Dref than AXB.
- Higher occurrence of large dose differences is associated with smaller target size (odds ratio=41.1, p<10⁻¹⁰, <0.3cc vs. \geq 0.3cc).
- No correlation was found between the occurrence of large dose differences and target-to-isocenter distance, technique (VMAT vs. DCA), or heterogeneity (distance to skull).

Figure 1: Dose differences at Dref between the two algorithms plotted for a total of 443 targets. When zoomed in (to <10cc upper in upper left insert and <1 cc in upper right insert), a target size dependency can be observed where larger dose differences tend to associate with smaller target sizes.

Conclusion

On a large patient cohort, clinical brain SRS dosimetry was compared between two advanced algorithms VMC and AXB. Our findings indicate that large target dose differences up to 15% on investigated coverage, mean, and hotspot target dose endpoints can exist between the two algorithms for small targets. Among the investigated factors, small target sizes (<0.3 cc) was found to associate with a higher chance of a >5% target dose difference between the two algorithms. Further investigation is warranted to better understand the discrepancy and improve dose calculation accuracy for modern SRS treatments.

Figure 2: Differences of Dref, D95, and Dmean plotted for example cases to show a dependency with target size for all endpoints, independent of planning technique.